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NUMERICAL STUDY OF THE ACTION OF A SHOCK WAVE ON AN OBSTACLE SCREENED 

BY A LAYER OF POROUS POWDER MATERIAL 

A. G. Kutushev and D. A. Rudakov UDC 532.529:518.5 

Currently for a number of branches of modern technology there is a very important prob- 
lem of mathematical modeling for the process of shock wave operation on an obstacle shielded 
by a layer of loose material. In particular the requirement of solving this problem is en- 
countered in pneumatic transport of loose materials with creation of a system for explosion 
protection of trunk lines, in powder technologies, in explosive processing of materials, and 
in safety techniques with analysis of the efficiency of protecting units screened by free- 
flowing layers. 

The problem of studying the effect of porous shields on the reaction of shock waves with 
a rigid surface has been considered in [1-4] where it is shown that the maximum pressure 
amplitude at an obstacle shielded by layer of porous material may exceed considerably the 
pressure of a normal reflected shock wave from the wall of an obstacle in the absence of a 
porous layer. In [i, 2] in order to explain the behavior of the shielding layers of porous 
shields of the polyurethane type (solid porous coating with a porosity of ~97%) with passage 
through the layer of shock waves with Mach number ~2 a very simple model of an effective gas 
is used. In [3] the effect is studied of a layer of polyurethane foam on the maximum excess 
pressure behind the shock wave reflected from the wall using in contrast to [i, 2] models 
describing shield porosity: a shielding porous layer is represented by an equivalent mechani- 
cal system with one degree of freedom from a load of mass m and a combination of ideally 
plastic and elastic elements. Results are given in [4] for an experimental study of the 
parameters of shock waves reflected from a solid wall coated by a layer of porous loose ma- 
terial. A similar model of a porous specimen is used in order to describe the behavior of 
the pressure amplitude at an obstacle. 

A detailed analysis is Provided in this work for the process of shielding an obstacle by 
a layer of loose material within the scope of a twolphase model of powder material. 

i. Basic Equations. In order to describe movement of a gas and porous powder material 
represented by a mixture of solid particles in contact with each other and gas in pores 
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assumptions known in the mechanics of dispersed solid multiphase materials are adopted [5]. 
In addition it is assumed that dispersed particles of powder material are an assembly of un- 
compressed deformable noncrushing monodispersed inert particles of spherical shape; a change 
in internal energy of the powder material caused by the work of the force of interplhase fric- 
tion is accomplished entirely through the gas phase. With these assumptions assuming the 
possibility of a difference in gases in different flow regions the equations for nonstationary 
plane unidimensional movement of a powder material are written in the form [5, 6] 

opii + 0pnvi = 0, 0pt2 + 0pi~t 0pz 0p~2 
0-7- o x  -d;- ~ = O, -dF + ~ = O, 

Optvt + Optv~ Op 
o---F- ~ + c~ ~ = - ~FI=,  

0"-~ + Y + c% Ox Ox - chFu' 

Op2t,~2TO2 002 
ot Ox 

0~2~p + Op2u2~p2 (1 ~ il Or2 
or 0~ - ~2r) oa. G = O, ( i .  1 ) 

o 
~ (9iEl + p;E2) + ~ (plEivi + p2E2v2 + p (uivi * c~2v2) ii �9 - a 2 . v a )  = O, 

p , = p ~  E,=u,+O,5v  ~, ( i = t , 2 ) ,  ~ + ~ 2 = i ,  
0 p~:=p~jc~j, E~j=u~j+O,5v~ ( j = l , 2 ) ,  u2=u2r+U2p, 

P~ = (! - ~) PH + ~Pt2, p0 = P~l (I - ~) + ~p0 
~ = ( 1 - e ) ~ l i + e ~ 2 ,  u i = ( 1 - e )  u i i + ~ u u ,  p = ( t - e )  Pll+eP~2. 

He:e subsequently lower indices i and 2 relate to gas and dispersed gas parameters, respec- 
tively; lower indices ii and 12 relate to the parameters of two different nonmixing gases 
localized in space; ~ is a parameter taking the value zero in the region of space occupied by 
the first gas and one in the region of space occupied by the second gas; p, p0, ~, v, u, E 
are average and true density, volume content, mass velocity, specific internal and total 

ii energy for the same or another component of the mixture; p is gas phase pressure; o2, is 
hypothetical stress (longitudinal "pressure" [5]) in a porous powder material caused by 
natural deformation of incompressible particles; d is particle diameter; Fi2 and Qi2 are 
force of interphase friction and the intensity of heat transfer from the gas to the dispersed 
phase in a unit volume of mixture; U2T and U2p are thermal and elastic components of the in- 
ternal energy of powder particles; and g2T is a factor determining the part of the work of 
intergranular stress converted into thermal energy of the solid phase u~r (0~< ~r ~< l). 

Set of quasilinear differential Eqs. (i.i), which describes the combined nonequilibrium 
movement of the gas and dispersed phase of powder material, is supplemented by equations of 
state for ideal calorifically perfect gases and incompressible solid particles: 

t&, (Y~ l) o = - p~ui~, uil = cbTi (YL~, Ci~ = const), ( 1 . 2  ) 
p0 = const, u: = c~T~ (c~ =consO 

[ Y i j  and c i j  a r e  i n d e x  o f  t h e  a d i a b a t  and  s p e c i f i c  h e a t  c a p a c i t y  w i t h  a c o n s t a n t  v o l u m e  o f  
t h e  j - t h  g a s  ( j  = 1,  2 ) ,  T 1 and  T z a r e  g a s  and  d i s p e r s e d  p a r t i c l e  t e m p e r a t u r e s ] .  

The equation of state for a porous skeleton of powder material describing interparticle 
interaction is prescribed on the basis of data in [7] in the following form 

o 2 ,  = o 2 - 1 ( c  H < rzS, ~; c~io) ,  P2~IPalP ~ Ctt 

0 (in other  cases) ( 1 . 3 )  

(am = a2e + k ( ~ ,  - -  ale), c~io ~< ~e). 

Here ~i0 and a~0 are porosity and sound velocity in powder material in the initial condition; 
~i~ and a~p are porosity and speed of sound in powder material in a free-flowing condition; 
k is an empirical constant specifying the growth in sound velocity in a compacted specimen of 
porous powder material [8]. 

The equation of state adopted in the form of (1.3) for the dispersed solid phase de- 
scribes the change in interparticle stress in powder material with compression of it and 
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unloading by a scheme for a nonlinearly elastic body. Within the scope of this scheme the 
heat inflow equation for the elastic component of internal energy for the dispersed phase 
(I.i) is solved analytically, and 

,,2, = - (i -  2T). 0<0 L + ~101n ai0(I -~0J (~I < %0 

r,- - o.1 o.l(1 - Oqp)] 4 am), ( 1 . 4 )  
u~, = - (1 - ~2r) a2pcqp k '  - r + ~> In ~ 1  - ~7)J (% < a >  

U2p = 0 {in other cases). 

The intensity of interphase friction and heat exchange is prescribed on the basis of 
relationships in [5, 6] 

3 a 2 
F12 = ~ 7 C,,p? I< - v~ I (v~ - v~), ( 1 . 5 )  

6cr 2 
Q'~ = 7 ;q N. ,~ (r~ - T~), h = (1 - r XH + EM, 

where C d is friction coefficient; Nut2 is gas phase Nusselt number; d is dispersed particle 
diameter; and X l, X1i are thermal conductivity coefficients for the gas phase as a whole and 
for the j-th gas individually (j = i, 2). 

The friction coefficient is described by an empirical relationship [9] 

I (1) 24 4,4 
G, - R-G + ~ + 0,42 ( ~  ~ o,92),  

(2) 4 . 150(1  - a l )  \ 
c,,= c, ) 

[ (0 ,92 - a l )  C~ 2~ + ( a l  - 0 ,55)  C(a t) (0,55 < % < 0,92) 
t 7 o-53- ( 1 . 6 )  

( R e , 2 = p ?  t v l - v 2  [ d/pL, l a l = ( 1 -  e ) ~ q , + t p u ) .  

Here Eel2 is Reynolds number for relative gas and powder material particle movement; ~i and 
Uz2 are dynamic viscosity of the gas phase as a whole and the j-th gas individually; C(dl) is 

aerodynamic resistance factor for single spherical particles; and C(d ~) is the friction coef- 
ficient for spherical particles in free-flowing powders obtained in experiments [i0]. 

In order to determine Nusselt number an empirical relationship is used [ii] 

J2 + 0,106 Reu Pr ~/3, Reu ~< 200, 

Nuu  = [2,274 + 0 ,6Re~ 3 Pr ~'3, Reu > 200 ( 1 . 7 )  

(Pr  = "hC~q/X~, 'h = ( l - - e )  ~'n + t~u),  

where Pr is P randtl number; and ~i and ~lj are indices of the adiabat for the gas phase as a 
whole and the j-th gas individually. 

2. Statement of the Problem. Applied to experimental conditions [4] the following prob- 
lem is considered. In the initial instant of time t = 0 in the high-pressure chamber (HPC) 
region of a shock tube (0 ~ x <~ x.) there is compressed gas (helium); the low-pressure chamber 
(LPC) region (x. <x <~ x~)is partly (x, < x < x,r162 filled with undisturbed gas (air) and partly 
(x** ~< x ~< x~) with a layer of free-flowing powder material which is a mixture of particles 
(polystyrene granules) in contact and gas (air) filling the pore space (Fig. i). At the end 
of the LPC (x = x w) there is a pressure sensor D. It is required to study the process of 
reaction of an air shock wave, forming in the LPC as a result of a breakdown of the initial 
discontinuity in the system of compressed HPC gas--LPC gas, with a layer of powder (x.. 4 x < x~) 
and an obstacle (x = x w) at instant of time t > 0 and to compare the solution obtained with 

experimental data. 

The initial conditions of the formulated problem have the form in region 0 ~< x < x. (com- 

pressed helium) 
p(x, 0) =p . ,  p~ 0) = 0, p~ 0)=pl (x ,  0)=Pl . ,  Tt(x, 0)=Tx.,  

( 2 . i )  
11 (X, O) = T 2 (X, O) = I) 2 (X, O) -~. O; 1)~ (x, 0) = 0, p2 (x, 0) = a2 (x, 0) = o2, 
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in region x, < x < x** (undisturbed air) 

p (x, 0) : po, po (x, 0) = p~ (x, 0) : p~o, 

p~2 (x,  0) = 0,  T~ (x, 0)  = T~o, v~ (x,  0) = 0, ( 2 . 2 )  

P2 (X, 0) = o~ 2 (X, 0) n = 02. (x,  0) = T2 (x,  0) = v2 (x, 0) = 0; 

and in region x** < x i Xw (free-flowing layer of powder) 

p ( x , O ) : p o ,  P?~(x,O)=~,~ p % ( x , O ) = O ,  p~(x,O) : (1-~o)P?o,  
T~ (x,  0)  = T~o, v~ (x,  0)  = 0,  c~2 (x, 0) = C~2o, p2 (x,  0) = c~2~o ~ ( 2 . 3 )  

o~.  (x,  0)  = 0,  T2 (x, 0) = T2o, v2 (x,  0)  = 0. 

The boundary conditions of the problem are prescribed as follows. At the left-hand 
(x = O) and right-hand (x = x w) boundaries of the calculation region corresponding to the 
ends of the shock tube conditions are laid down for equality to zero of gas and powder par- 
ticle velocities : 

vt(0,  t ) = v l ( x ~ . , t ) = 0 ,  t ) 0 ,  ( 2 . 4 )  
v2 (0 ,  t) = v2 (x~, t) = 0, t ;,  0. 

Numerical integration of set of Eqs. (1.1)-(1.7) with initial (2.1)-(2.3) and boundary 
(2.4) conditions was carried out by the method of coarse particles [12, 13]. Calculations 
were performed using the following values of thermodynamic parameters of the phases: 

i) in region 0 ~x~x. for helium p, = 5 MPa, 91" = 8.2 kg/m 3, TI, = 293 K, Y12 = 1.67, 
Cpl 2 = 5190 mi/(seci.K), ~12 = 1.95"10-5 kg/(m-sec), 112 = 0.149 kg.m/(sec3.K); 

2) in region x,< x < x** for air P0 = 0.i MPa, P~0 = 1.19 kg/m 3, Tl0 = 293 K, Yzl = i.4, 
Cpl I = 1004 mi/(seci.K), U11 = 1.81"10-s kg/(m.sec), I11 = 0.0258 kg.m/(sec3.K); 

3) in region x** ~ x ~ x~ for air P0 = 0.i MPa, P~0 = 1.19 kg/m 3, Tl0 = 293 K, Y11 = 1.4, 
~i0 = 0.52, Cpl I = 1004 mi/(seci.K), ~11 = 1.81"10-5 kg/(m.sec), Izl = 0.0258 kg.m/ 
(sec3.K); 

4) in region x..~x~x~ for polystyrene particles 9~ = 1060 kg/m 3, ~20 = 0.48, d = 200 
~m, Ti0 = 293 K, c 2 = 1300 mi/(seci.K), ai0 = 420 m/sec. 

Values of 0.01, 2.98, and 3 m were taken for x,, x**, and Xw, respectively. 

3. Some Results. A qualitative picture of the wave interaction of an incident air shock 
wave with a layer of powder (if it is considered as an "effective" material) and an obstacle 
is shown in Fig. 1 where region I is occupied by air, II is occupied by effective material 
relating to a layer of powder, K is the boundary of the layer, S o is incident air shock wave, 

! I 
S i and R i are compression and rarefaction waves in the layer shielding the obstacle which 
arise after reaction of shock wave S o with contact surface K (the number 1 indicates the se- 
quence of wave formation in the layer as a result of reaction of waves with the obstacle and 
the boundary of the layer K), Sl, $3, and R 5 are shock waves and rarefaction waves in air 
which form as a result of reaction of waves in the layer with its boundary K. 

Thus, as can be seen from Fig. 1 if a layer of powder shielding an obstacle is repre- 
sented as an effective material, then the action of the incident air shock wave on the ob- 
stacle will be governed by reaction of compression and rarefaction waves with the obstacle 
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arriving from the shielding layer. It should be noted that this representation of a layer 
shielding an obstacle (see also [i, 2]) does not reflect features of powder material loading 
and unloading connected with the two-phase nature of the powder layer: the rapid nonequi- 
librium nature of the phases, nonconformity of stresses in the powder skeleton and in the 
pore gas, etc. 

We turn to considering numerical solutions obtained within the scope of the general sys- 
tem of nonequilibrium two-phase movement of gas and powder particles. 

Presented in Fig. 2 are curves for gas pressure (solid lines) and effective intergranular 
pressure of powder particles (broken lines) at instants of time 5.89, 5.97, 6.0, 6.04, 6.08 
msec (curves i-5, respectively). The broken-dotted line shows the contact boundary of the 
air-powder layer. It can be seen that as a result of reaction of an air shock wave (curve i) 
with a layer of powder in the air region a shock wave is reflected, in the region of the pow- 
der material gas filtering through powder pores leads to movement of particles which in con- 
tact with each other form a compression wave in the solid skeleton (curves 2). On reaction 
of the compression wave in the powder with the obstacle (rigid wall) in the region of the 
shielding layer a compression wave is reflected propagating through powder particles (curve 
3), and here pressure at the obstacle increases markedly. 

As a result of reaction of a compression wave in the powder with the boundary of the 
layer a weak shock wave passes into the gas region, and in the powder material region a rare- 
faction wave propagates (curves 4) which reduces pressure at the obstacle. The subsequent 
wave process in the gas and in the shielding layer is governed by reaction of compression 
and rarefaction waves with the boundary of the layer and the obstacle, and pressure at the 
wall increases or decreases correspondingly on reaction of a compression or rarefaction wave 
with the obstacle (curves 4, 5). It is noted that the wave picture in the shielding powder 
layer is governed by compression and rarefaction waves which propagate through the solid 
powder phase, and gas continues to filter through the pores continuously increasing pressure 
at the obstacle (solid lines in the powder layer region). 

Given in Fig. 3 is the distribution of gas pressure p and total stress in the powder 
= - 011 The instants of time and notation are the same as in Fig. 2. It can material PE P 2*. 

be seen from Fig. 3 that the qualitative picture of wave processes in the powder (as an ef- 
fective material) provided in Fig. 1 adequately explain the wave picture in the powder layer 
and gas. As noted above, the main contribution to the wave behavior of powder material is 
given by the intergranular pressure of particles o2,11 (see Fig. 2). 

As a result of reaction of an air shock wave with the boundary of the layer gas pene- 
trating into the powder is retarded around particles simultaneously drawing them into move- 
ment. In view of the considerable inertia of particles their movement velocity is low (~2 
m/sec), although it is sufficient for powder deformation caused by movement of particles 
leading to a marked increase in intergranular pressure. There is almost no movement of the 
layer boundary, which is also noted in experiments in [4]. This is explained by the low 
movement velocity of particles and the fact that after each reaction of compression and rare- 
faction waves from the boundary of the layer propagating within the powder the contact bound- 
ary changes the direction of movement into an opposite one (see Fig. i). 

Given in Fig. 4 is an oscillogram of pressure at the obstacle in the case of absence of 
a shielding layer. The change of pressure at the obstacle is caused by reaction of an air 
shock wave (curve 1 in Fig. 2) with an absolutely rigid wall. The oscillogram of pressure 
at the wall has a flat triangular profile. This is explained by the fact that the incident 
shock wave at the obstacle by weakening rarefraction waves passing from the left-hand end 
of the shock tube acquires a triangular form and it is reflected from the obstacle in the form 
of a triangular-shaped shock wave. Thus, the oscillogram of pressure from a sensor placed at 
the obstacle has a uniformly decreasing form with a maximum equal to ~0.28 MPa. 

Presented in Fig. 5 are oscillograms of pressure at the obstacle with shielding of it 
by a layer of free-flowing powder. Shown in Fig. 5a is the picture obtained by calculation 
for the change in gas pressure at the obstacle (solid line) and the intergranular pressure 
of particles (broken line). Shown in Fig. 5b is the calculated (solid line) and experimental 
[4] (broken-d0tted line) oscill0grams for total stress at the obstacle. 

As can be seen from Fig. 5b, the nature of change in pressure at the obstacle with 
shielding by a layer of free-flowing material is markedly different from the case of no 
shielding laYer: it is not uniform with rapidly fading oscillations. Here the maximum 
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pressure at the wall markedly exceeds the maximum pressure in the case of no free-flowing 
layer and in calculations it is ~0.4 MPa. Behind the compression phase at the obstacle sur- 
face there follows a rarefraction phase in which pressure is reduced to ~0.125 MPa. The non- 
uniform behavior of pressure at the end of the shock tube, as was shown above, is explained 
by reaction of compression and rarefaction waves with the obstacle and the surface layer of 
the powder. 

From Fig. 5a it can be seen that the change in pressure at the wall caused by gas pres- 
sure in powder pores (solid line) is governed by gas filtration through the powder layer and 
it has a continuously increasing form. "Bursts" in pressure lasting ~0.15 msec are deter- 
mined by compression and unloading of the solid skeleton of the powder layer, and their dura- 
tion depends on the propagation rate for waves in the shielding layer. 

From comparison of the calculated and experimental oscillograms for pressure at the LPC 
end it is possible to conclude qualitative agreement of the calculated solution with experimental 
data. Quantitative differences occur for the oscillation amplitude of the pressure sensor 
placed on the obstacle; in particular, the difference in maximum pressure at the wall ob- 
tained by numerical calculation from that measured in an experiment is ~50%. This is appa- 
rently connected with the fact that in prescribing polystyrene powder parameters (in par- 
ticular sound velocity in free-flowing powder) some rules of these parameters typical for 
free-flowing materials were used. In addition , the maximum load on the obstacle depends to 
a considerable extent on the initial state of the powder material: whether it is in a limit- 
ing packing condition or not. As additional calculations show, if the initial powder porosity 
~0 is greater than the free-flowing porosity ~ip, then with passage of a shock wave in a 
layer of powder material considerable particle velocities are realized and correspondingly 
there is a greater intergranular pressure compared with the case in question, and the ampli- 
tude of maximum pressure at the obstacle may markedly exceed the value obtained. Unfor- 
tunately the relationship between ~i0 and ~ip is not specified in [4] and therefore in the 
calculation it was assumed that ~ip = ~i0. 

Thus, the results of the numerical study performed point to the suitability of the two- 
velocity model (with two pressures of gas mixture and solid particles in contact) for de- 
scribing the process of shielding an obstacle with free-flowing layers. In addition, it is 
established for the case in question of shielding an obstacle by a powder layer the contri- 
bution of the thermal nonequilibrium of phases in view of the considerable mass of powder 
particles is negligibly small (the difference in solutions with consideration of and without 
taking account of interphase heat exchange does not exceed ~1%). The variation in parameter 
$zT in the range from 0 to 1 also does not have a marked effect on the process of shielding 
an obstacle by a layer of powder material. 
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